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We estimate the dimension of high-frequency stock-price data using the correlation integral of
Grassberger and Procaccia. The data, even after filtering, appear to be of low dimension. To
control for dependence in higher moments, we use a new technique known as the method of
delays in our reconstruction. Delaying the data leads dimension estimates similar to random
processes. We conclude that the data are either of low dimension with high entropy or nonlinear

but of high dimension.
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The study of nonlinear dynamics has generated con-
ceptual breakthroughs in areas as diverse as fluid dy-
namics, cardiology, and biology. Seemingly random
phenomena have been modeled successfully as low-
dimensional nonlinear maps. Several authors (Barnett
and Chen 1988; Brock 1986; Brock and Sayers 1988;
Frank and Stengos 1988, 1989, Scheinkman and Le-
Baron 1989) have applied nonlinear analysis to eco-
nomic and financial data.

This article is an attempt to uncover evidence of com-
plex dynamics in U.S. equity markets. We determine
the dimension and entropy of real-time stock-price data
using the correlation integral of Grassberger and Pro-
caccia (1983a). Our data track the intradaily movements
in the Standard and Poor’s (S&P) 500 cash index, sam-
pled at 20-second intervals, approximately 20,000 ob-
servations in all. No previous analysis of economic or
financial data has used sample sizes approaching those
used in the physical sciences, typically 15,000 to 40,000
observations. This allows us to compute dimension es-
timates with a much higher level of statistical reliability.
As Ramsey and Yuan (1990) noted, dimension esti-
mates can be significantly biased in samples under 5,000
observations.

The work of Takens (1980, 1983) underlies the em-
pirical analysis of nonlinear systems. Takens showed
that one can determine the dimension of a dynamical
system from a univariate time series. Proper reconstruc-
tion of the dynamical system is critical though and re-
quires eliminating temporal dependence from the data;
failure to do so often results in dimension estimates that
are biased downward. Brock (1986) noted that dimen-
sion estimates should be invariant to smooth transfor-
mations of the data and advocated reconstruction using
the residuals from a linear time series model. Subse-

quently, economists have adopted the Brock residual
test as the standard diagnostic.

We argue that filtering techniques can be misleading.
Our concern is that the Brock residual test has little
power against the alternative of dependence in higher
moments, a property often found in financial data. We
show that a smooth nonlinear data-generating mecha-
nism for stock returns will generate temporal depen-
dence in all of the data’s moments. Under these cir-

* cumstances, no finite set of filters is adequate to remove
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temporal dependence. Even after autoregressive mov-
ing average (ARMA) and generalized autoregressive
conditional heteroscedasticity (GARCH) filtering, di-
mension estimates will still be biased.

This article proposes that the economics literature
follow the physical sciences in using the method of time
delays. Rather than trying to filter out the dependence
in the time series, one uses lags of the data at which
the series has become approximately independent.
Choosing this lag is a crucial free parameter. If we
choose too short a delay, we fail to eliminate temporal
dependence. Alternatively, if the delay is too long, it
is difficult to detect underlying low-dimensional struc-
ture. With sensitive dependence, any noise on the sys-
tem will cause the attractor’s structure to be obliterated
after a limited number of iterations. Data sampled at
a daily frequency stand little chance of uncovering the
dynamic properties of a chaotic attractor operating at
an hourly frequency.

There is an optimal frequency, in a statistical sense,
at which to reconstruct the system’s dynamics. This oc-
curs at some fraction of the mean orbital time at which
the data are nearly independent. In our analysis, a min-
imum of mutual information occurs at a sampling in-
terval of approximately five minutes.
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After filtering with both ARMA and GARCH models,
we find very strong evidence of low dimension. From
the shift in the correlation integral, we also find a very
high degree of entropy. By the methods currently em-
ployed in the economics literature, one could construe
this as very strong evidence for chaotic dynamics.

When we reconstruct using the method of time de-
lays, however, we find very different results. Our di-
mension estimates resemble those of random processes.
We conclude that the data are either not of low di-
mension or that entropy renders the market nearly ran-
dom after only five minutes.

The organization of the article is as follows: Section
1 describes the properties of the data we are looking
for, dimension and entropy. Section 2 describes the
correlation integral and how to construct estimates of
dimension and entropy. Section 3.1 details the standard
practice in the economics literature of filtering with
ARMA and GARCH models. The bulk of our contri-
bution is in the empirical analysis of Section 3.2, where
we compute estimates of dimension and entropy using
filtered data. Section 4 argues why filtering is likely to
be inadequate. Section 5 repeats the dimension calcu-
lations using the method of delays and comes to very
different conclusions. Section 6 includes a summary of
our results.

1. MATHEMATICAL CHAOS

In this article, we study discrete dynamical systems
of the form

xr+l e F().’r), (1)

where F : R" — R". Much of the empirical work in
nonlinear dynamics is concerned with uncovering the
dimension of the attracting set of (1). An attractor is a
compact set, A, with the property that there is a neigh-
borhood of A such that for almost every initial condition
the limit set of iterates of (1) as t— o is A. As a practical
matter, we focus attention on finding systems of low
dimension; these are the .only systems that can be re-
liably distinguished from random ones.

1.1 Reconstructing Complex Dynamics

In our application, x, might be thought of as the mar-
ket. We receive only a scalar signal of its “heartbeat”
in the form of a unvariate time series of the S&P 500
index of stocks,

pe = h(x), ()

where 4 : R"— R is an observer function of the market.
What hope, if any, might we have of recovering the
market dynamics from p,? Takens (1980, 1983) showed
that much of the system’s dynamics is preserved as long
as F and h are at least C? functions. Define an m-
dimensional vector constructed from our univariate time
SEries,

series,
P;" = (pn e p.’+m—l)
= (h(x), . . ., B(F"" (%)) = J,,, 3)

where F~! is the composition of F with itself m — 1
times. For example, F?(x,) = F(F(x,)). We can now
state the following result.

Proposition 1.1 (Takens 1980). For smooth pairs
(h, F), the map J,, : R" — R™ will be an embedding
form =2n + 1.

Takens’ theorem is really quite remarkable and has
motivated nearly all of the empirical research on chaos.
As Brock (1986) noted, the theorem implies that the
dynamical behavior of the m vectors of stock-price data
will resemble the unobservable dynamical behavior of
the market process. Most important for our purposes
is that the embedding preserves both the dimension and
entropy of the dynamical system.

In summary, the Takens embedding theorem allows
the degree of complexity of an underlying system to be
recovered from a scalar time series that is smoothly
related to the state variables of the system. In practice,
however, proper reconstruction of the attractor is cru-
cial; it is extremely important to remove the temporal
dependence of nearby points on the reconstructed at-
tractor. In implementing the Grassberger and Procaccia
(GP) algorithm, the choice of time delay in the m vec-
tors is crucial in properly constructing the embedding.
If the data are sampled at very fine or coarse intervals,

; the dynamics can remain hidden from the analyst. We

develop the GP procedure in Section 2 and discuss in
greater detail various experimental considerations in
Section 3.

1.2 Lyapunov Exponents and Entropy

A distinguishing property of chaotic processes is that
of sensitive dependence; points that are initially close
together tend to spread apart eventually. This property
may lead the analyst to mistake a chaotic system for a
random one. Combined with measurement limitations
of the current state, sensitive dependence places an
upper bound on the ability to forecast chaotic processes,
even if the model F is known with perfect certainty.

To formalize the notion of sensitive dependence, we
use the concept of the Lyapunov exponent. Let D FY
be the n X n Jacobian matrix evaluated at x € R", and
let (D, FN)* be the transpose of D FV.

Definition 1.1 (Guckenheimer and Holmes 1985).
Consider subspaces VI D V{2 D - .. D Vi in the
tangent space at F¥(x) and numbers p, = pu, = - - - =
w, with the properties that (a) D F(VYVY) = V),
(b) dimension (V) = n + 1 — j, and (c) limy_...(1/
N) X InV(D FM)*(D,F) - v = p; forallv € V§) —
V§* Y. The u, are then called the Lyapunov exponents.

As is standard in dynamic models, the largest ex-
ponent is crucial. If the map F is chaotic, at least one




of the exponents must be positive. We treat the exist-
ence of a positive Lyapunov exponent as the definition
of a chaotic system.

The Lyapunov exponents tell us about the average
rate of expansion or contraction along the entire tra-
jectory. In a chaotic system, points are being separated
continually from one another in at least one dimension.
Small discrepancies in the initial state become magni-
fied and eventually become distinct trajectories.

In the empirical work that follows, we will not esti-
mate the exponents directly. Rather, we will estimate
the system’s entropy. Pesin (1977) showed that the met-
ric entropy equals the sum of the positive Lyapunov
exponents. If we find evidence of low dimension and
positive entropy, this will be strong evidence for the
existence of chaotic dynamics.

2 THE CORRELATION INTEGRAL

This section details the workhorse of the empirical
literature on nonlinear dynamics, the correlation inte-
gral. The first part is devoted to dimension estimation
and the second part to entropy.

2.1 Correlation Dimension

Consider vector m histories of the S&P 500 index,

Dith= (Pja cee pj+m-—l)' 4)

The correlation integral measures the number of m vec-
tors within an ¢ neighborhood of one another (Grass-
berger and Procaccia 1983a, 1984). In our notation, the
correlation integral is defined as

- Sl ;
Cle) = i}ﬂl N X #(J, Bl oy — prll < &},

eIzl kS

where [|-|| is some norm, A is the number of m histories,
m is the embedding dimension, and # denotes the car-
dinality of the set. As ¢ — 0, C,,(¢) ~ £*, where v, the
correlation exponent, is a lower-bound estimate of the
Hausdorff dimension. Thus, for small ¢,

In,C,,(¢) = In,k + v Inye, (6)

where k is a constant. In practice, (6) is calculated over
arange of £’s. Brock (1986) showed that the correlation
exponent is independent of any two norms and inde-
pendent of m for m = 2n + 1.

2.2 Kolmogorov Entropy

Direct numerical computation of Lyapunov expo-
nents has proven to be quite difficult in experimental
systems. The most popular algorithm has been the one
proposed by Wolf, Swift, Swinney, and Vastano (1985).
Eckmann, Kamphurst, Ruelle, and Scheinkman (1988)
and Barnett and Chen (1988) applied this algorithm to
stock-market data and monetary indexes, respectively.
Recently, McCaffrey, Ellner, Gallant, and Nychka (1991)
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proposed a new approach that works directly with the
Jacobian matrix using nonparametric regression.
Estimates of Lyapunov exponents, however, have
proven to be quite sensitive to embedding dimension
and initial conditions, so we motivate an alternative
procedure that can be implemented using the correla-
tion integral. Grassberger and Procaccia (1983b, 1984)
showed that the vertical change in the position of the
invariant portion of the correlation integral (i.e., where
the slope is unchanging) is a lower-bound estimate of
Kolmogorov entropy. Specifically, they defined

1 C,(e)
K; 4(e) = —In ——~, (7)
e 6@
where C,(¢) is the value of the correlation integral for
embedding dimension d and delay time between ob-
servations 7. They showed that

Iil‘l‘l Kzld(s) = Kz, (8)
d— =
e—0

where K, is order-2 Renyi entropy, which is a lower-
bound estimate of Kolmogorov entropy. As embedding
dimension increases, the average vertical distance be-
tween the integrals is the GP lower-bound estimate of
Kolmogorov entropy.

3. DIMENSION AND ENTROPY ESTIMATES
USING FILTERED DATA

In this section, we use the correlation integral to es-
timate both the dimension and entropy of our real-time
stock-price data. In seeking to replicate previous work
in the economics literature, we first look at transfor-
mations of the data that rely only on filtering. In Section
5, we repeat our calculations using the method of delays.

3.1 Filtering

Brock and Sayers (1988) studied the effect of tem-
poral dependence on dimension estimates. They re-
ported low-dimension estimates for a number of quar-
terly economic time series, but they believed these
estimates to be spurious because of near unit roots. In
phase space, data that are highly correlated will lie nearly
along a line. Thus the reconstructed attractor will be
stretched along a ray, leading the data analyst to un-
derestimate the true dimension. Grassberger and Pro-
caccia (1983a) noted the same phenomena in continu-
ous time processes sampled at very close intervals.

Addressing this problem, Brock (1986) proposed us-
ing the residuals from a linear time series model to
estimate dimension. Under the chaotic null, the resid-
uals will preserve the dimension of the attracting set.

Proposition 3.1 (Brock [1986] Residual Test Theo-
rem). Consider the model (1), (3) with F possessing
a chaotic attractor. The residuals from a finite dimen-
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sional autoregressive (AR) process fit to p, will have
the same dimension as p,.

After filtering the data with various ARMA models,
Brock and Sayers [1988] rejected the hypothesis that
the true data-generating process is of low dimension.
All subsequent work in the economics literature has
followed Brock’s procedure of whitening the data with
filters.

Scheinkman and LeBaron (1989) proposed another
diagnostic tool, shuffling the data. By randomizing the
original series, one creates a series without temporal
structure. For an iid process, randomizing will not effect
the dimension, since the shuffled series will also be iid.
For data generated by a low-dimensional chaotic at-
tractor, however, the loss of structure will cause the
data to become more space filling. Thus dimension
calculations based on the shuffled data are a useful
benchmark against which to compare actual dimension
estimates,

Few studies have passed the shuffle diagnostic after
ARMA filtering. Frank and Stengos (1989) and
Scheinkman and LeBaron (1989) reported dimension
estimates, in the range of 6 to 7 after filtering, that pass
the shuffle diagnostic. If filtering has not removed all
of the temporal dependence, however, these results may
still be biased. Only if the dimension estimates are
robust to a delay time reconstruction can we be con-
fident that filtering has removed all of the temporal
dependence.

3.2 Data

We analyze the S&P 500 stock index, sampled at
approximately 20-second intervals, as a measure of real-
time market-wide price fluctuations. The S&P 500 index
is a weighted average of stock prices, providing a smooth
aggregator of the underlying market dynamics. The
principal problem in using an index is the possibility of
introducing noise into the system through aggregation
bias. The quality of the index can be crucial for esti-
mates of dimension and entropy. Barnett and Chen
(1988) found evidence for chaotic dynamics in five Divisia
but only one simple-sum monetary aggregate. Since the
S&P 500 is a widely traded asset and can be replicated
with positions in the underlying stocks, arbitrage pos-
sibilities are likely to keep the noise level low.

The data are from January 1987 and were obtained
from the Chicago Mercantile Exchange, which monitors
the S&P 500 for the trading of index futures. There are
19,027 observations in this trading month, comparable
to the sample sizes of experimental data used in the
physical sciences.

Previous studies employing relatively low-frequency
economic data, such as those of Brock and Sayers (1988)
and Frank and Stengos (1988), have only been able to
analyze data sets of 200 observations because they are
limited to post-World War II quarterly observations. In

a previous analysis of the S&P 500, Scheinkman and
LaBaron (1989) examined a daily data set of approxi-
mately 5,000 observations. The actual dimension cal-
culations, however, are computed for weekly return
series of one-fifth that size. Frank and Stengos (1989)
looked at a precious-metal series at a daily frequency
but have only 12 years of data. In contrast, our real-
time data set provides a virtually limitless number of
time series observations reflecting market conditions.

We log-difference the original data to create a series
of real-time returns. In Table 1, we show descriptive
statistics for the original and log-differenced series. Ref-
erences to the S&P 500 are to this transformed series.
There are significant departures from normality in the
third and fourth cumulants. Although excess kurtosis
is a common feature of high-frequency asset returns,
the skewness seems to be a unique aspect of the real-
time data.

Following Brock (1986), we filter the log-differenced
series with linear ARMA models. On the basis of the
Akaike information criterion, an ARMA (12, 0, 0) model
is used to filter the data. Since the stock exchange does
not trade continuously, dummy variables for the first
and last hours of the day are also included to account
for nontrading effects.

Our next concern is dependence in the second mo-
ments, particularly because of the excess kurtosis. The
squared residuals from the ARMA model are tested,
and evidence of Engle’s (1982) autoregressive condi-

_ tional heteroscedasticity is detected. A GARCH (1, 1)

model is then fit by maximum likelihood, and the data
are filtered again. Since we are taking a smooth trans-
formation of the data, the Brock residual theorem ap-
plies to this series as well. Under the GARCH null, the
data will be a random process after filtering. If we de-
note the conditional mean as p, and the conditional
variance as o,, the standardized residuals,

v, = (!’r\/_gﬁ;}‘ 9)

are distributed N(0, 1).

After prewhitening the data, we have three time se-
ries: (1) SP500, the log difference of the original S&P
500 cash index; (2) ARMA, the residuals from passing
SP500 through an ARMA (12, 0, 0) filter; and
(3) GARCH, the standardized ARMA residuals.

Table 1. Descriptive Statistics: S&P 500 Index

Statistic Levels Log-differences
Mean 263.35 .65257E-05
Standard deviation 8.8518 .13975E-03
Skewness —.34592 —3.0980
Kurtosis —.B2171 192.47
Minimum 242.22 —.57800E-02
Maximum 280.96 .25684E-02
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Table 2. Correlation Exponent Estimates

S&P500 ARMA GARCH DELAY 16
Embedding (1) @) (1) (@) (1) (2) (1) (2)
2 1.39 1.42 1.70 1.76 1.76 1.71 1.41 1.42
3 2.33 249 2.39 2.55 2.45 2.48 2.40 2.49
4 2.95 3.32 2.94 3.40 3.02 8.32 3.29 3.29
5 3.37 4.16 338 4.16 3.51 4.02 3.98 4.15
6 8.53 4.91 3.60 4.93 3.88 4.78 4.74 4.89
7 3.53 5.67 3.63 5.82 3.95 5.72 5.43 5.64
8 3.45 6.34 8.53 6.67 3.98 6.38 6.30 6.32
9 3.37 7.25 3.44 7.38 3.88 7.15 6.91 7.25
10 3.21 7.78 3.26 8.40 3.81 8.10 7.69 7.74
15 2.83 10.77 2.85 10.89 8.17 11.44 10.33 9.90
20 2.59 12.30 2.60 12.73 8.12 14.09 11.80 12.46

MOTE: Columns (1) report estimates for original series and columns (2) report estimates for the shuffled series.

3.3 Dimension Estimates

We calculate estimates of the correlation exponent
over the range of embedding dimensions M = 2, 3,
..., 10,15, 20. Theoretically, dimension estimates are
made as & — 0. In practice, estimates are made over a
range of values. The smallest value of ¢ is determined
by the precision of the raw data; the original S&P 500
cash index is reported in dollars and cents. Conse-
quently, the smallest nonzero change in the index that
can be recorded is .01. This determines the smallest
nonzero distance between any two m vectors. For the
SP500 time series, the lower bound of the meaningful
portion of the correlation integral is In,é = —14.7. We
set an upper bound for & such that 50% of the calculated
norms are eliminated. This rule for estimating the cor-
relation dimension roughly coincides with estimating
the slope of the steepest segment of the correlation
integral as identified by the nonparametric procedure
developed by Mayfield and Mizrach (1991).

Results are reported in Table 2. Columns (1) report
estimates for the ordered time series, and columns (2)
report estimates for the shuffled series. Using a uniform
pseudorandom number generator, each shuffled series
is constructed by random draws without replacement
from the associated original series. For the three series
SP500, ARMA, and GARCH, comparison of adjacent
enibedding spaces indicates that marginal increases in
embedding beyond 6 and 8 fail to reveal additional
structure in the attractor. By comparing dimension es-
timates for the original series to those for the corre-
sponding shuffled series, it is clear that there is low-
dimensional structure present in the data.

In summary, across all three times series, dimension
estimates become invariant to embedding and plateau
at about 3.5 to 4.0. These estimates are in striking con-
trast to those based on the shuffled series. For each of
the shuffled series, estimates continue to increase with
embedding. It is clear that, by shuffling the data, the
resulting series are much more space-filling than the
original ones. In Figures 1, 2, and 3, we compare di-
mension estimates of the ordered series with those of

the shuffled series. All three series pass the shuffle
diagnostic.

In addition, by comparing the largest estimated di-
mension for each series (SP500: 3.53, ARMA: 3.63,
GARCH: 3.98) it is clear that the low-dimension esti-
mates reported in Table 2 are not due to the effects of
a near unit-root process or GARCH process. In addi-
tion, these estimates are well below the estimates of 6
to 7 found by Scheinkman and LaBaron (1989) using
daily closes.

3.4 Entropy Calculations

The results in Section 3.3 indicate that a low-dimen-
.sional process for stock-market prices exists. Further-
more, our evidence indicates that the nonlinearities are
beyond GARCH. These estimates do not, by them-
selves, however, indicate that the underlying attractor
is chaotic; the attractor must also be shown to have
positive entropy.

Under the premise that the reconstruction is correct,
we calculate a lower-bound estimate of its entropy based
on the procedure described by Grassberger and Pro-

EstimatedDimension

Embedding Dimension

Figure 1. Dimension Estimates SP500: Ordered Versus Shuffled
Data. This figure graphs the estimated GP correlation dimension for
a range of embedding dimensions. The dark points (®) represent
estimates for the ordered data and plateau around 3.5 as the embed-
ding dimension rises. The dimension estimates for the shuffled data,
as represented by the light points (©), continue to rise with embed-
ding dimension.
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Figure 2. Dimension Estimates After ARMA Filtering: Ordered
Versus Shuffled Data. The estimated correlation dimensions are
graphed against their associated embedding dimensions. Using the
ordered data, the estimates approach 3.5, while the estimates based
on shuffled data continue to increase with embedding: e, ordered
data; o, shuffled data.

caccia (1983b, 1984) and described in Section 2.2. Table
3 displays the vertical change in the correlation integral
and the implied entropy estimate per one minute for
the series. For small ¢, the entropy estimate is propor-
tional to the negative of the change in the intercept
term as the embedding dimension increases. Figure 4
shows a graph of K, versus embedding dimension.

Based on these calculations, the K, lower-bound es-
timate of Kolmogorov entropy is approximately one-
third of a bit of information per minute. Since we re-
construct the attractor from the difference in the S&P
500 cash index, which is reported in dollars and cents,
our accuracy of the current state of the system is only
1 part in 50. Thus we have no more than six bits of
information on the current state of the system. Given
an observation on the current state of the system and
knowledge of the true underlying system, an investor
would have no knowledge of the system’s state after 15
to 18 minutes. We define this duration as the implied
forecast horizon and use it to support our choice of
delay time in Section 4.

=

on
£ @ O N

EstimatedDimensi

T T T T T T Tt

2 4 6 8 1 12 14 16 18 20 22
Embedding Dimension

P =

Figure 3. Dimension Estimates of Standardized GARCH Resid-
uals: Ordered Versus Shuffled Data. After applying the GARCH filter,
estimated correlation exponents peak at slightly less than 4, while
the estimates using shuffled data continue to be space filling: e,
ordered data; o, shuffled data.

Table 3. Entropy Calculations

Embedding K
dimension A intercept (bits/min.)
3 —1.884 5.652
<4 —1.688 5.064
5 —1.256 3.768
6 —.687 2.061
7 -.319 .957
8 =77 531
9 -.118 .354
10 -.085 .285
15 —.486 291
20 —.579 .348

On finding positive entropy, a researcher might con-
clude that the stock-return series is chaotic; however,
if filtering has not removed temporal dependence in the
data, this conclusion will be incorrect. In Section 5 of
the article, we address the issue of time delays. If the
reconstruction is correct, dimension calculations will be
robust to delays within the region of sensitive depen-
dence implied by our entropy calculations. In fact, we
show that our dimension estimates are not invariant to
delay time.

4. HIGHER ORDER TEMPORAL DEPENDENCE

In this section, we motivate why the data may still
be temporally dependent after filtering. Assume for
expository purposes that F in (1) is a scalar analytic
function. Consider a series expansion of F around 0.

Fix)i= icjx{. (10)

Suppose that one fits an AR(1) model to the data-
generating mechanism (10). Define the residuals

£l = Xy — ﬁxr- (11)

White (1980) showed that B will not coincide with the
¢;'s of the power series expansion if one estimates B

n %] I o

Bits per Minute

e T S T R T
Embedding Dimension

[ ]

oo

Figure 4. K, Lower Bound Entropy Estimate (bits per minute). This
figure plots the vertical shift in the invariant segment of the correlation
integral against the corresponding embedding dimension. For large
embeddings, this is a lower-bound estimate of Kolmogorov entropy.
At an embedding dimension of 10, the values plateau at approxi-
mately one-third of a bit of information per minute.



using ordinary least squares. More important for our
purposes is that the residuals will be uncorrelated with
lagged x’s, but not independent; that is, E[&.lx] = 0;
but E[£,,,|x?] # 0. This result will obtain for any filter
of degree k. Define the kth order residuals,

k
Shr = Xy = 2 Byl (12)
o=
These residuals will still be correlated with the k + 1th
power of x, E[£F, ||xk*1] # 0.

The data seem to show precisely this type of high-
order dependence. Although GARCH filtering may ac-
count for the excess kurtosis, it is not equipped to re-
move the skewness. Only by delaying the data can we
be sure that some higher order dependence does not
remain.

5. THE METHOD OF TIME DELAYS

Takens’s theorem allows us, in principle, to choose
m histories with any delay time 7 in reconstructing the
attractor:

P}" = (p_;" pj+r’ p;'+2w il st+(m—1,w)- (13)

In applied work, however, the quality of the recon-
struction depends critically on the choice of 7. Empir-
ically, it is desirable to reconstruct with data that are
widely dispersed on the attractor. Filtered data, how-
ever, are no more likely to satisfy this criteria than the
unfiltered data. In short, ARMA and GARCH filtering
will rule out only very specific types of temporal de-
pendence.

To ensure a wide dispersion of points on the attractor,
the delay time 7 is chosen so as to minimize the infor-
mation on p, contained in p,_.. Holzfuss and Mayer-
Kress (1986) noted that, in highly periodic data, the
first zero-crossing of the autocorrelation function cor-
responds to the first minimum of mutual information
function. In the log-differenced data, the first zero-
crossing point of the autocorrelation function occurs at
the 16th lag.

Using a delay of 16 observations between coordi-
nates, we recalculate our dimension estimates. This de-
lay corresponds to 5.33 minutes, which is well within
our implied forecast horizon of 15 to 18 minutes. The
fourth column of Table 2 reports these estimates as
DELAY16. With this reconstruction, our dimension
estimates are no longer invariant to embedding. In ad-
dition, by comparing the estimates to those from the
corresponding shuffled series, as in Table 2, it is clear
that the data are as space-filling as a stochastic process.
With a conservative delay, the apparent structure of the
system is removed.

The dramatic rise in dimension estimates is evidence
of dependence in higher moments. It is not possible,
however, to uniquely identify the source. With data
sampled at such high frequency, nontraded stocks might
be the cause. If a security does not trade within a given
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interval, then its most recent value is used in the cal-
culation of the index. Thus nontraded securities could
be a source of spurious dependence.

Two empirical observations lead us to the conclusion
that nontraded securities are not the fundamental cause
of the biased dimension estimates. First, the filters in-
clude opening and closing dummies for the first and last
hours of the day. This should remove some nontrading
effects, yet dimension estimates remain essentially un-
changed using the filtered data. Second, based on the
Wood transactions data, we compute a rough gauge on
how often the stocks in the S&P500 trade. During Jan-
uary 1987, the lowest volume New York Stock Ex-
change stock in our sample is Brown and Sharpe (B&S).
From a random selection of days, we estimate B&S has
35 quotes and trades per day, on average. At the other
extreme, Ford Motor Company is a representative high-
volume stock, with an average of 1,320 trades and quotes
per day. For Ford, information arrives every 19.1 sec-
onds, while for B&S it takes 722.9 seconds. With no
delay, at an embedding dimension of 10, each m vector
spans approximately 199.8 seconds (3.33 minutes). By
interpolating between the rate at which Ford and B&S
trade, we estimate that new information arrives on at
least 371 of the S&P 500 stocks (=75%) within the time
spanned by a given m vector.

Given that large stocks trade more frequently, over
75% of the S&P’s market value is updated in this time
interval. As embedding increases from 3 to 10 (or even

. 20), however, the dimension estimates remain very low,

even though most stocks in the index have traded. Con-
sequently, we do not believe that the dramatic change
in dimension estimates using the method of delays is
due to nontrading effects.

These results demonstrate that, with real-time data,
filtering may not remove temporal dependence. Since
filtering techniques remove only very specific types of
nonlinear dependence, there is great potential for in-
correctly detecting low dimension in real-time data. For
this reason, we argue that the method of time delays is
the appropriate reconstruction technique.

6. CONCLUSION

To gain deeper insight into the determination of stock-
market prices, we apply nonlinear analysis to real-time
data on the S&P 500 cash index. The use of high-
frequency data enables us to examine the precise ev-
olution of the market. Using the correlation integral,
we find evidence of a low-dimensional attractor with
positive entropy. These calculations are robust to ARMA
and GARCH filtering but are not robust to changes in
delay time.

The analysis of real-time data requires special con-
siderations. Filtering is unable to remove temporal de-
pendence in the stock-market data. In this instance, the
choice of delay time is crucial for the proper recon-
struction of the attractor; a delay long enough to elim-
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inate the possible stretching of the attractor must be
chosen. We choose a conservative delay of five minutes.
With this delay time, the apparent structure of the sys-
tem is removed.

Our inference concerning these results is, unfortu-
nately, only heuristic. As Barnett and Hinich (1991)
noted, no formal asymptotic theory for estimates of the
correlation dimension and Kolgomorov entropy exists
under the null hypothesis of chaos. Until such a theory
is devised, we can only buttress evidence for nonlinear
structure using existing statistical tools. Barnett and
Hinich, for example, used the bispectrum.

We conclude that either the underlying system is of
very high dimension or, if the true system is, in fact, of
low dimension, its entropy is so high that it cannot be
predicted beyond five minutes. From the standpoint of
financial-market participants, these conclusions are es-
sentially equivalent. Accepting the first conclusion, that
there is a chaotic attractor, does not make the data in
any sense more predictable. For very near-term fore-
casts, accurate prediction of the system’s future state is
possible; however, entropy causes these forecasts to
deteriorate quickly. Our findings indicate that stock
prices, even accounting for the nonlinearities, cannot
be predicted over horizons of significant length.
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